viernes, 21 de mayo de 2010

¿de què trata la lògica?

La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un argumento es válido. La lógica es ampliamente aplicada en la filosofía, matemáticas, computación, física. En la filosofía para determinar si un razonamiento es válido o no, ya que una frase puede tener diferentes interpretaciones, sin embargo la lógica permite saber el significado correcto. En las matemáticos para demostrar teoremas e inferir resultados matemáticas que puedan ser aplicados en investigaciones. En la computación para revisar programas. En general la lógica se aplica en la tarea diaria, ya que cualquier trabajo que se realiza tiene un procedimiento lógico, por el ejemplo; para ir de compras al supermercado una ama de casa tiene que realizar cierto procedimiento lógico que permita realizar dicha tarea. Si una persona desea pintar una pared, este trabajo tiene un procedimiento lógico, ya que no puede pintar si antes no prepara la pintura, o no debe pintar la parte baja de la pared si antes no pintó la parte alta porque se mancharía lo que ya tiene pintado, también dependiendo si es zurdo o derecho, él puede pintar de izquierda a derecha o de derecha a izquierda según el caso, todo esto es la aplicación de la lógica.



La lógica es pues muy importante; ya que permite resolver incluso problemas a los que nunca se ha enfrentado el ser humano utilizando solamente su inteligencia y apoyándose de algunos conocimientos acumulados, se pueden obtener nuevos inventos innovaciones a los ya existentes o simplemente utilización de los mismos.



El orden en que se presenta el documento es el siguiente: Primeramente se establece la importancia de la lógica matemática, después definimos el concepto de proposición. Se establece el significado y utilidad de conectivos lógicos para formar proposiciones compuestas. Más tarde abordamos las proposiciones condicionales y bicondicionales. Definimos tautología, contradicción y contingente, y proporcionamos una lista de las tautologías más importantes, así mismo explicamos a que se le llama proposiciones lógicamente equivalente apoyándonos de tablas de verdad. Para finalizar; abordamos los métodos de demostración: directo y por contradicción, en donde incluye reglas de inferencia.



En este trabajo se trata además de presentar las explicaciones con ejemplos que le sean familiares. Nuestro objetivo es que el alumno aprenda a realizar demostraciones formales por el método directo y el método por contradicción. Ya que la mayoría de los libros comerciales únicamente se quedan en explicación y demostración de reglas de inferencia. Consideramos que sí el alumno aprende lógica matemática no tendrá problemas para aprender ciencias exacta y será capaz de programar computadoras, ya que un programa de computadora no es otra cosa que una secuencia de pasos lógicos, que la persona establece para resolver n problema determinado.



Es importante mencionar que en las demostraciones no hay un solo camino para llegar al resultado. El camino puede ser mas largo o más corto dependiendo de las reglas de inferencia y tautologías que el alumno seleccione, pero definitivamente deberá llegar al resultado. Puede haber tantas soluciones como alumnos se tenga en clase y todas estar bien. Esto permite que el estudiante tenga confianza en la aplicación de reglas y fórmulas. De tal manera que cuando llegue a poner en practica esto, el sea capaz de inventar su propia solución, porque en la vida cada quien resuelve sus problemas aplicando las reglas de inferencia para relacionar los conocimientos y obtener el resultado.

No hay comentarios:

Publicar un comentario en la entrada